home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Turnbull China Bikeride
/
Turnbull China Bikeride - Disc 2.iso
/
STUTTGART
/
MATHS
/
PARI
/
PARI2
/
pari
/
c
/
polarit1
< prev
next >
Wrap
Text File
|
1991-11-28
|
53KB
|
1,914 lines
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~ ~*/
/*~ OPERATIONS ARITHMETIQUES ~*/
/*~ ~*/
/*~ SUR LES POLYNOMES ~*/
/*~ ~*/
/*~ (premiere partie) ~*/
/*~ ~*/
/*~ copyright Babe Cool ~*/
/*~ ~*/
/*~ ~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
# include "genpari.h"
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* */
/* DIVISIBILITE */
/* */
/* Renvoie 1 si y divise x, 0 sinon . */
/* */
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
gdivise(x,y)
GEN x,y;
{
long avmacourant,i;
GEN p1;
avmacourant=avma;
p1=gmod(x,y);i=gcmp0(p1);
avma=avmacourant;
return i;
}
poldivis(x,y,z)
GEN x,y,z;
{
long av=avma;
GEN p1,p2;
p1=poldivres(x,y,&p2);
if(signe(p2)) {avma=av;return 0;}
gaffect(p1,z);avma=av;return 1;
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* */
/* REDUCTION */
/* */
/* Met sous forme de fraction une nfraction; sous */
/* forme de fr.rat une n.fr.rat; dans les autres cas */
/* creation d'une copie . */
/* */
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
GEN gred(x)
GEN x;
{
long tx,tetpil,l;
GEN y,p1,x1,x2,x3;
tx=typ(x);l=avma;
if ((tx==4)||(tx==5))
{
y=dvmdii(x[1],x[2],&p1);
if(!signe(p1)) cgiv(p1);
else
{
p1=mppgcd(x[2],p1);tetpil=avma;
y=cgetg(3,4);
if(gcmp1(p1))
{
y[1]=lcopy(x[1]);
y[2]=lcopy(x[2]);
}
else
{
y[1]=ldivii(x[1],p1);
y[2]=ldivii(x[2],p1);
}
y=gerepile(l,tetpil,y);
}
}
else if ((tx==13)||(tx==14))
{
x1=content(x[1]);x2=content(x[2]);x3=gdiv(x1,x2);
x1=(gcmp0(x1))?(GEN)x[1]:gdiv(x[1],x1);
x2=gdiv(x[2],x2);y=poldivres(x1,x2,&p1);
if(gcmp0(p1)) {tetpil=avma;return gerepile(l,tetpil,gmul(x3,y));}
else
{
p1=ggcd(x2,p1);y=cgetg(3,13);
if(isscalar(p1)) {y[1]=(long)x1;y[2]=(long)x2;}
else {y[1]=ldeuc(x1,p1);y[2]=ldeuc(x2,p1);}
x1=numer(x3);x2=denom(x3);tetpil=avma;
p1=cgetg(3,13);p1[1]=lmul(x1,y[1]);p1[2]=lmul(x2,y[2]);
return gerepile(l,tetpil,p1);
}
}
else y=gcopy(x);
return y;
}
/* REDUCTION SUR PLACE AVEC CHANGEMENT DE TYPE EVENTUEL */
void gredsp(px)
GEN *px;
{
long tx,l,l1;
GEN x,y,p1;
x= *px;tx=typ(x);
if ((tx==4)||(tx==5))
{
l=avma;
y=dvmdii(x[1],x[2],&p1);
if(!signe(p1))
{
cgiv(p1);l1=(long)(x+3);*px=gerepile(l1,l,y);
}
else
{
p1=mppgcd(x[2],p1);
if(!gcmp1(p1))
{
mpdivz(x[1],p1,x[1]);
mpdivz(x[2],p1,x[2]);
}
settyp(x,4);avma=l;
}
}
else if ((tx==13)||(tx==14))
{
l=avma;
y=poldivres(x[1],x[2],&p1);
if(!signe(p1))
{
cgiv(p1);l1=(long)(x+3);*px=gerepile(l1,l,y);
}
else
{
p1=primpart(ggcd(x[2],p1));
if(isnonscalar(p1))
{
gdeucz(x[1],p1,x[1]);
gdeucz(x[2],p1,x[2]);
}
settyp(y,13);avma=l;
}
}
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* */
/* DIVISION EUCLIDIENNE DES POLYNOMES */
/* */
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
GEN gdeuc(x,y)
GEN x,y;
{
long tx=typ(x),ty=typ(y),dx,dy,dz,vx,vy,i,j,l,tetpil,tetpil2,f;
GEN z,p1,p2,p3;
if(ty<10) return gdiv(x,y);
if(tx<10) return gzero;
if((tx!=10)||(ty!=10)) err(poler1);
if(gcmp0(y)) err(poler4);
dx=lgef(x)-3;dy=lgef(y)-3;vx=varn(x);vy=varn(y);
if((vx>vy)||(dx<dy))
{z=cgetg(3,10);z[1]=2;z[2]=zero;setvarn(z,vy);}
else
{
if(vx<vy) z=gdiv(x,y);
else
{
dz=dx-dy;
z=cgetg(dz+3,10);z[1]=0x1000003+dz;setvarn(z,vx);
f=gcmp1(y[dy+2]);
if(f) z[dz+2]=lcopy(x[dx+2]);
else
z[dz+2]=ldiv(x[dx+2],y[dy+2]);
for(i=dx-1;i>=dy;--i)
{
l=avma;p1=(GEN)(x[i+2]);tetpil2=0;
for(j=i-dy+1;(j<=i)&&(j<=dz);j++)
{
p2=gmul(z[j+2],y[i-j+2]);
tetpil2=avma;p1=gsub(p1,p2);
}
tetpil=avma;
if(f)
{
if(tetpil2) z[i-dy+2]=lpile(l,tetpil2,p1);
else z[i-dy+2]=(long)p1;
}
else
{
p3=gdiv(p1,y[dy+2]);
z[i-dy+2]=lpile(l,tetpil,p3);
}
}
}
}
return z;
}
GEN gres(x,y)
GEN x,y;
{
long tx=typ(x),ty=typ(y),dx,dy,dz,i,j,k,f,l,l1,l2,tetpil,vx,vy;
GEN z,p1,p2,p3,p4;
if(ty<10) return gzero;
if(tx<10) return gcopy(x);
if((tx!=10)||(ty!=10)) err(poler2);
if(gcmp0(y)) err(poler5);
dx=lgef(x)-3;dy=lgef(y)-3;vx=varn(x);vy=varn(y);
if((vx>vy)||(dx<dy)) z=gcopy(x);
else
{
if(vx<vy)
{z=cgetg(3,10);z[2]=zero;z[1]=2;setvarn(z,vx);}
else
{
dz=dx-dy;l1=avma;
p4=cgetg(dz+3,10);p4[1]=0x1000003+dz;setvarn(p4,vx);
p4[dz+2]=ldiv(x[dx+2],y[dy+2]);
for(i=dx-1;i>=dy;--i)
{
l=avma;p1=(GEN)(x[i+2]);
for(j=i-dy+1;(j<=i)&&(j<=dz);j++)
{
p2=gmul(p4[j+2],y[i-j+2]);
p1=gsub(p1,p2);
} tetpil=avma;p3=gdiv(p1,y[dy+2]);
p4[i-dy+2]=lpile(l,tetpil,p3);
}
l2=avma;f=1;
for(i=dy-1;(i>=0)&&f;--i)
{
l=avma;p1=(GEN)(x[i+2]);
for(j=0;(j<=i)&&(j<=dz);j++)
{
p2=gmul(p4[j+2],y[i-j+2]);
tetpil=avma;p1=gsub(p1,p2);
}
p1=gerepile(l,tetpil,p1);f=gcmp0(p1);
}
if(f)
{z=cgetg(3,10);z[1]=2;z[2]=zero;setvarn(z,vx);}
else
{
z=cgetg(i+4,10);z[1]=0x1000004+i;setvarn(z,vx);
z[i+3]=(long)p1;
for(k=i;k>=0;--k)
{
l=avma;p1=(GEN)(x[k+2]);
for(j=0;(j<=k)&&(j<=dz);j++)
{
p2=gmul(p4[j+2],y[k-j+2]);
tetpil=avma;p1=gsub(p1,p2);
}
z[k+2]=lpile(l,tetpil,p1);
}
}
z=gerepile(l1,l2,z);
}
}
return z;
}
GEN poldivres(x,y,pr)
GEN x,y,*pr;
{
long tx=typ(x),ty=typ(y),dx,dy,dz,i,j,k,f,l,tetpil,vx,vy;
GEN z,p1,p2,p3;
if(ty<10) {*pr=gzero;return gdiv(x,y);}
if(tx<10) {*pr=gcopy(x);return gzero;}
if(tx!=10) err(poler3);
vx=varn(x);vy=gvar9(y);
if(vy>vx)
{
z=gdiv(x,y);p1=cgetg(3,10);*pr=p1;p1[1]=2;
p1[2]=zero;setvarn(p1,vx);
}
else
{
if(typ(y)!=10) err(poler3);
if(gcmp0(y)) err(poler6);
dx=lgef(x)-3;dy=lgef(y)-3;
if((vx>vy)||(dx<dy))
{
z=cgetg(3,10);z[1]=2;z[2]=zero;
setvarn(z,vy);*pr=gcopy(x);
}
else
{
dz=dx-dy;
z=cgetg(dz+3,10);z[1]=0x1000003+dz;setvarn(z,vx);
z[dz+2]=ldiv(x[dx+2],y[dy+2]);
for(i=dx-1;i>=dy;--i)
{
l=avma;p1=(GEN)(x[i+2]);
for(j=i-dy+1;(j<=i)&&(j<=dz);j++)
{
p2=gmul(z[j+2],y[i-j+2]);
p1=gsub(p1,p2);
}
tetpil=avma;p3=gdiv(p1,y[dy+2]);
z[i-dy+2]=lpile(l,tetpil,p3);
}
f=1;
for(i=dy-1;(i>=0)&&f;--i)
{
l=avma;p1=(GEN)(x[i+2]);
for(j=0;(j<=i)&&(j<=dz);j++)
{
p2=gmul(z[j+2],y[i-j+2]);
tetpil=avma;p1=gsub(p1,p2);
} p1=gerepile(l,tetpil,p1);f=gcmp0(p1);
}
if(f)
{
*pr=cgetg(3,10);(*pr)[1]=2;(*pr)[2]=zero;
setvarn(*pr,vx);
}
else
{
*pr=cgetg(i+4,10);(*pr)[1]=0x1000004+i;
setvarn(*pr,vx);(*pr)[i+3]=(long)p1;
for(k=i;k>=0;--k)
{
l=avma;p1=(GEN)(x[k+2]);
for(j=0;(j<=k)&&(j<=dz);j++)
{
p2=gmul(z[j+2],y[k-j+2]);
tetpil=avma;p1=gsub(p1,p2);
}
(*pr)[k+2]=lpile(l,tetpil,p1);
}
}
}
}
return z;
}
/*********************************************************************/
/*********************************************************************/
/* */
/* FONCTION BEZOUT */
/* */
/*********************************************************************/
/*********************************************************************/
GEN bezoutpol(a,b,u,v)
GEN a,b,*u,*v;
{
GEN d,q,u1,u2,u3,w1,w2,w3,*bof;
long av,av1,av2,va,dec;
if ((typ(a)!=10)||(typ(b)!=10)) err(bezoutpoler);
if((va=varn(a))!=varn(b)) err(bezoutpoler);
if (lgef(b)>lgef(a))
{
u1=b;b=a;a=u1;bof=u;u=v;v=bof;
}
if (signe(b)) {
w1=a;w2=b;u1=polun[va];u2=gzero;
av=avma;
do
{
q=poldivres(w1,w2,&w3);
u3=gsub(u1,gmul(q,u2));
u1=u2;u2=u3;w1=w2;w2=w3;
}
while(signe(w3));
u3=gdiv(gsub(w1,gmul(u1,a)),b);av2=avma;
d=gdiv(w1,w3=leadingterm(w1));u2=gdiv(u1,w3);
u1=gdiv(u3,w3);av1=avma;dec=lpile(av,av2,0)>>2;
*u=adecaler(u2,av2,av1)?u2+dec:u2;*v=adecaler(u1,av2,av1)?u1+dec:u1;
if(adecaler(d,av2,av1)) d+=dec;
} /* fin du cas b non nul */
else {d=gcopy(a);*u= *v=polun[va];}
return d;
}
GEN polinvmod(x,y)
GEN x,y;
{
long av,av1;
GEN u,v,d;
av=avma;
d=bezoutpol(x,y,&u,&v);
if (gcmp0(d)||isnonscalar(d)) err(invmoder);
av1=avma;
return gerepile(av,av1,gdiv(u,d[2]));
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* */
/* EVALUATION D'UN POLYNOME REEL */
/* */
/* */
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
GEN poleval(x,y)
GEN x,y;
{
long l,av,tetpil,i,tx;
GEN z,p1,p2,p3,r,s;
if((tx=typ(x))<10) return gcopy(x);
if(tx!=10) err(polevaler1);
l=lgef(x);
if (l==2) z=gzero;
else
{
if (l==3) z=gcopy(x[2]);
else
{
av=avma;p1=(GEN)x[l-1];
if(typ(y)!=6)
{
for (i=l-1;i>3;--i)
p1=gadd(gmul(p1,y),x[i-1]);
p1=gmul(y,p1);tetpil=avma;
z=gerepile(av,tetpil,gadd(p1,x[2]));
}
else
{
p2=(GEN)x[l-2];r=gadd(y[1],y[1]);
s=gnorm(y);
for(i=l-3;i>=2;--i)
{
p3=gadd(p2,gmul(r,p1));
p2=gsub(x[i],gmul(s,p1));
p1=p3;
}
p1=gmul(y,p1);tetpil=avma;
z=gerepile(av,tetpil,gadd(p1,p2));
}
}
}
return z;
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* */
/* RACINES COMPLEXES */
/* */
/* l represente la longueur voulue pour les parties */
/* reelles et imaginaires des racines de x */
/* */
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
GEN roots(x,l)
long l;
GEN x;
{
long av,i,j,f,g,fr,deg,l0,l1,l2,l3,l4,ln,dec;
long exc,expmin,m,deg0,k,ti,h,ii,e,e1,emax,v;
GEN y,xc,xd0,xd,xdabs,p1,p2,p3,p4,p5,p6,p7,p8;
GEN p9,p10,p11,p12,p14,p15,pa,pax,pb,pp,pq,ps;
if(typ(x)!=10) err(poler7);
else
{
v=varn(x);deg0=lgef(x)-3;expmin=(2-l)*32+12;
if(!signe(x)) err(poler8);
y=cgetg(deg0+1,18);if(!deg0) return y;
for(i=1;i<=deg0;i++)
{
p1=cgetg(3,6);p1[1]=lgetr(l);
p1[2]=lgetr(l);y[i]=(long)p1;
}
g=1;f=1;
for(i=2;i<=deg0+2;i++)
{
ti=typ(x[i]);
if(ti==8)
{
p2=(GEN)((GEN)((GEN)x[i])[1])[2];
if(gcmpgs(p2,0)>0) g=0;
}
else
if(ti>5) g=0;
}
l1=avma;p2=cgetg(3,6);
p2[1]=lmppi(3);
p2[2]=ldivrs(p2[1],10);
p11=cgetg(4,10);p11[1]=0x1000004;setvarn(p11,v);p11[3]=un;
p12=cgetg(5,10);p12[1]=0x1000005;setvarn(p12,v);p12[4]=un;
for(i=2;(i<=deg0+2)&&(gcmp0(x[i]));i++)
gaffsg(0,y[i-1]);k=i-2;
if(k!=deg0)
{
if(k)
{
j=deg0+3-k;pax=cgetg(j,10);pax[1]=0x1000000+j;
setvarn(pax,v);
for(i=2;i<j;i++)
pax[i]=x[i+k];
}
else pax=x;
xd0=deriv(pax,v);pp=ggcd(pax,xd0);m=1;pa=pax;
h=isnonscalar(pp);if(h) pq=gdeuc(pax,pp);
do
{
if(h)
{
pa=pp;pb=pq;
pp=ggcd(pa,deriv(pa,v));h=isnonscalar(pp);
if(h) pq=gdeuc(pa,pp);else pq=pa;
ps=gdeuc(pb,pq);
}
else ps=pa;
/* calcul des racines d'ordre exactement m */
deg=lgef(ps)-3;
if(deg)
{
l3=avma;e=gexpo(ps[deg+2]);emax=e;
for(i=2;i<deg+2;i++)
{
p3=(GEN)(ps[i]);
if(!gcmp0(p3))
{
e1=gexpo(p3);
if(e1>emax) emax=e1;
}
}
e=emax-e;if(e<0) e=0;avma=l3;
if(ps!=pax) xd0=deriv(ps,v);
xdabs=cgetg(deg+2,10);xdabs[1]=xd0[1];
for(i=2;i<deg+2;i++)
{
l3=avma;p3=(GEN)xd0[i];p4=gabs(greal(p3));
p5=gabs(gimag(p3),l);l4=avma;
xdabs[i]=lpile(l3,l4,gadd(p4,p5));
}
l0=avma;xc=gcopy(ps);xd=gcopy(xd0);l2=avma;
for(i=1;i<=deg;i++)
{
if(i==deg)
{
p1=(GEN)y[k+m*i];
gdivz(gneg(xc[2]),xc[3],p1);
p14=(GEN)(p1[1]);p15=(GEN)(p1[2]);
}
else
{
p3=gshift(p2,e);p4=poleval(xc,p3);
p5=gnorm(p4);exc=0;
while(exc>= -20)
{
p6=poleval(xd,p3);p7=gneg(gdiv(p4,p6));
f=1;l3=avma;if(gcmp0(p5)) exc= -32;
else exc=expo(gnorm(p7))-expo(gnorm(p3));
avma=l3;
for(j=1;(j<=10)&&f;j++)
{
p8=gadd(p3,p7);p9=poleval(xc,p8);
p10=gnorm(p9);
f=(cmprr(p10,p5)>=0)&&(exc>= -20);
if(f) {gshiftz(p7,-2,p7);avma=l3;}
}
if(f) err(poler9);
else
{
av=avma;dec=lpile(l2,l3,0)>>2;
p3=adecaler(p8,l3,av)?p8+dec:p8;
p4=adecaler(p9,l3,av)?p9+dec:p9;
p5=adecaler(p10,l3,av)?p10+dec:p10;
}
}
p1=(GEN)y[k+m*i];setlg(p1[1],3);
setlg(p1[2],3);gaffect(p3,p1);avma=l2;
p14=(GEN)(p1[1]);p15=(GEN)(p1[2]);
for(ln=4;ln<=l;ln=(ln<<1)-2)
{
setlg(p14,ln);setlg(p15,ln);
if(gcmp0(p14))
{settyp(p14,1);p14[1]=2;}
if(gcmp0(p15))
{settyp(p15,1);p15[1]=2;}
p4=poleval(xc,p1);p5=poleval(xd,p1);
p6=gneg(gdiv(p4,p5));
settyp(p14,2);settyp(p15,2);
gaffect(gadd(p1,p6),p1);avma=l2;
}
}
setlg(p14,l);setlg(p15,l);
p7=gcopy(p1);
p14=(GEN)(p7[1]);p15=(GEN)(p7[2]);
setlg(p14,l+1);setlg(p15,l+1);
if(gcmp0(p14))
{settyp(p14,1);p14[1]=2;}
if(gcmp0(p15))
{settyp(p15,1);p15[1]=2;}
for(ii=1;ii<=5;ii++)
{
p4=poleval(ps,p7);p5=poleval(xd0,p7);
p6=gneg(gdiv(p4,p5));p7=gadd(p7,p6);
p14=(GEN)(p7[1]);p15=(GEN)(p7[2]);
if(gcmp0(p14))
{settyp(p14,1);p14[1]=2;}
if(gcmp0(p15))
{settyp(p15,1);p15[1]=2;}
}
gaffect(p7,p1);p6=gdiv(p4,poleval(xdabs,gabs(p7,l)));
avma=l2;
/* if(!gcmp0(p6))
if(gexpo(p6)>=expmin) err(poler10);*/
if((expo(p1[2])<expmin)&&g)
{
gaffect(zero,p1[2]);
for(j=1;j<m;j++)
gaffect(p1,y[k+(i-1)*m+j]);
p11[2]=lneg(p1[1]);l4=avma;
xc=gerepile(l0,l4,gdeuc(xc,p11));
}
else
{
for(j=1;j<m;j++)
gaffect(p1,y[k+(i-1)*m+j]);
if(g)
{
p1=gconj(p1);
for(j=1;j<=m;j++)
gaffect(p1,y[k+i*m+j]);i++;
p12[2]=lnorm(p1);
p12[3]=lmulsg(-2,p1[1]);
l4=avma;
xc=gerepile(l0,l4,gdeuc(xc,p12));
}
else
{
p11[2]=lneg(p1);l4=avma;
xc=gerepile(l0,l4,gdeuc(xc,p11));
}
}
xd=deriv(xc,v);l2=avma;
}
k=k+deg*m;
}
m++;
}
while (k!=deg0);
}
avma=l1;
if(g&&(deg0>1))
{
for(j=2;j<=deg0;j++)
{
p1=(GEN)y[j];fr=gcmp0(p1[2]);
i=j-1;
if(fr)
{
p2=(GEN)y[i];f=!gcmp0(p2[2]);
if(!f) f=(cmprr(p2[1],p1[1])>0);
for(;(i>0)&&f;--i)
{
y[i+1]=y[i];
p2=(GEN)y[i];f=!gcmp0(p2[2]);
if(!f) f=(cmprr(p2[1],p1[1])>0);
}
}
y[i+1]=(long)p1;
}
}
}
return y;
}
GEN rootslong(x,l)
long l;
GEN x;
{
long av,i,j,f,g,fr,deg,l0,l1,l2,l3,l4,ln,dec;
long exc,expmin,m,deg0,k,ti,h,ii,e,e1,emax,v;
GEN y,xc,xd0,xd,xdabs,p1,p2,p3,p4,p5,p6,p7,p8;
GEN p9,p10,p11,p12,p14,p15,pa,pax,pb,pp,pq,ps;
if(typ(x)!=10) err(poler7);
else
{
v=varn(x);deg0=lgef(x)-3;expmin=(2-l)*32+12;
if(!signe(x)) err(poler8);
y=cgetg(deg0+1,18);if(!deg0) return y;
for(i=1;i<=deg0;i++)
{
p1=cgetg(3,6);p1[1]=lgetr(l);
p1[2]=lgetr(l);y[i]=(long)p1;
}
g=1;f=1;
for(i=2;i<=deg0+2;i++)
{
ti=typ(x[i]);
if(ti==8)
{
p2=(GEN)((GEN)((GEN)x[i])[1])[2];
if(gcmpgs(p2,0)>0) g=0;
}
else
if(ti>5) g=0;
}
l1=avma;p2=cgetg(3,6);
p2[1]=lmppi(l);
p2[2]=ldivrs(p2[1],10);
p11=cgetg(4,10);p11[1]=0x1000004;setvarn(p11,v);p11[3]=un;
p12=cgetg(5,10);p12[1]=0x1000005;setvarn(p12,v);p12[4]=un;
for(i=2;(i<=deg0+2)&&(gcmp0(x[i]));i++)
gaffsg(0,y[i-1]);k=i-2;
if(k!=deg0)
{
if(k)
{
j=deg0+3-k;pax=cgetg(j,10);pax[1]=0x1000000+j;
setvarn(pax,v);
for(i=2;i<j;i++)
pax[i]=x[i+k];
}
else pax=x;
xd0=deriv(pax,v);pp=ggcd(pax,xd0);m=1;pa=pax;
h=isnonscalar(pp);if(h) pq=gdeuc(pax,pp);
do
{
if(h)
{
pa=pp;pb=pq;
pp=ggcd(pa,deriv(pa,v));h=isnonscalar(pp);
if(h) pq=gdeuc(pa,pp);else pq=pa;
ps=gdeuc(pb,pq);
}
else ps=pa;
/* calcul des racines d'ordre exactement m */
deg=lgef(ps)-3;
if(deg)
{
l3=avma;e=gexpo(ps[deg+2]);emax=e;
for(i=2;i<deg+2;i++)
{
p3=(GEN)(ps[i]);
if(!gcmp0(p3))
{
e1=gexpo(p3);
if(e1>emax) emax=e1;
}
}
e=emax-e;if(e<0) e=0;avma=l3;
if(ps!=pax) xd0=deriv(ps,v);
xdabs=cgetg(deg+2,10);xdabs[1]=xd0[1];
for(i=2;i<deg+2;i++)
{
l3=avma;p3=(GEN)xd0[i];p4=gabs(greal(p3));
p5=gabs(gimag(p3),l);l4=avma;
xdabs[i]=lpile(l3,l4,gadd(p4,p5));
}
l0=avma;xc=gcopy(ps);xd=gcopy(xd0);l2=avma;
for(i=1;i<=deg;i++)
{
if(i==deg)
{
p1=(GEN)y[k+m*i];
gdivz(gneg(xc[2]),xc[3],p1);
p14=(GEN)(p1[1]);p15=(GEN)(p1[2]);
}
else
{
p3=gshift(p2,e);p4=poleval(xc,p3);
p5=gnorm(p4);exc=0;
while(exc>= -20)
{
p6=poleval(xd,p3);p7=gneg(gdiv(p4,p6));
f=1;l3=avma;if(gcmp0(p5)) exc= -32;
else exc=expo(gnorm(p7))-expo(gnorm(p3));
avma=l3;
for(j=1;(j<=50)&&f;j++)
{
p8=gadd(p3,p7);p9=poleval(xc,p8);
p10=gnorm(p9);
f=(cmprr(p10,p5)>=0)&&(exc>= -20);
if(f) {gshiftz(p7,-2,p7);avma=l3;}
}
if(f) err(poler9);
else
{
av=avma;dec=lpile(l2,l3,0)>>2;
p3=adecaler(p8,l3,av)?p8+dec:p8;
p4=adecaler(p9,l3,av)?p9+dec:p9;
p5=adecaler(p10,l3,av)?p10+dec:p10;
}
}
p1=(GEN)y[k+m*i];gaffect(p3,p1);avma=l2;
p14=(GEN)(p1[1]);p15=(GEN)(p1[2]);
for(ln=4;ln<=l;ln=(ln<<1)-2)
{
if(gcmp0(p14))
{settyp(p14,1);p14[1]=2;}
if(gcmp0(p15))
{settyp(p15,1);p15[1]=2;}
p4=poleval(xc,p1);p5=poleval(xd,p1);
p6=gneg(gdiv(p4,p5));
settyp(p14,2);settyp(p15,2);
gaffect(gadd(p1,p6),p1);avma=l2;
}
}
p7=gcopy(p1);
p14=(GEN)(p7[1]);p15=(GEN)(p7[2]);
setlg(p14,l+1);setlg(p15,l+1);
if(gcmp0(p14))
{settyp(p14,1);p14[1]=2;}
if(gcmp0(p15))
{settyp(p15,1);p15[1]=2;}
for(ii=1;ii<=((e<<5)+2);ii<<=1)
{
p4=poleval(ps,p7);p5=poleval(xd0,p7);
p6=gneg(gdiv(p4,p5));p7=gadd(p7,p6);
p14=(GEN)(p7[1]);p15=(GEN)(p7[2]);
if(gcmp0(p14))
{settyp(p14,1);p14[1]=2;}
if(gcmp0(p15))
{settyp(p15,1);p15[1]=2;}
}
gaffect(p7,p1);p6=gdiv(p4,poleval(xdabs,gabs(p7,l)));
avma=l2;
/* if(!gcmp0(p6))
if(gexpo(p6)>=expmin) err(poler10);*/
if((expo(p1[2])<expmin)&&g)
{
gaffect(zero,p1[2]);
for(j=1;j<m;j++)
gaffect(p1,y[k+(i-1)*m+j]);
p11[2]=lneg(p1[1]);l4=avma;
xc=gerepile(l0,l4,gdeuc(xc,p11));
}
else
{
for(j=1;j<m;j++)
gaffect(p1,y[k+(i-1)*m+j]);
if(g)
{
p1=gconj(p1);
for(j=1;j<=m;j++)
gaffect(p1,y[k+i*m+j]);i++;
p12[2]=lnorm(p1);
p12[3]=lmulsg(-2,p1[1]);
l4=avma;
xc=gerepile(l0,l4,gdeuc(xc,p12));
}
else
{
p11[2]=lneg(p1);l4=avma;
xc=gerepile(l0,l4,gdeuc(xc,p11));
}
}
xd=deriv(xc,v);l2=avma;
}
k=k+deg*m;
}
m++;
}
while (k!=deg0);
}
avma=l1;
if(g&&(deg0>1))
{
for(j=2;j<=deg0;j++)
{
p1=(GEN)y[j];fr=gcmp0(p1[2]);
i=j-1;
if(fr)
{
p2=(GEN)y[i];f=!gcmp0(p2[2]);
if(!f) f=(cmprr(p2[1],p1[1])>0);
for(;(i>0)&&f;--i)
{
y[i+1]=y[i];
p2=(GEN)y[i];f=!gcmp0(p2[2]);
if(!f) f=(cmprr(p2[1],p1[1])>0);
}
}
y[i+1]=(long)p1;
}
}
}
return y;
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* */
/* Recherche des racines modulo p ( par verif f(x)=0 ) */
/* */
/* (retourne le vecteur horizontal dont les composantes */
/* sont les racines (eventuellement vecteur a 0 comp.) */
/* */
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
GEN rootmod2(f,p)
GEN f,p;
{
GEN g,y,z,ss;
long vf,av,av1,av2,deg,s,nbrac,pasfini;
if((typ(f)!=10)||gcmp0(f)) err(factmoder);
y=(GEN)(f[2]);vf=varn(f);
if((typ(y)!=3)||!gegal(y[1],p))
{p=gcopy(p);av=avma;f=gmul(f,gmodulcp(un,p));}
else
av=avma;
deg=lgef(f)-3;
s=0;nbrac=0;
y=cgetg(deg+1,17);
av1=avma;
do
{
if(av1==avma)
{
ss=stoi(s);
pasfini=(gcmp(p,ss)>0);
}
else av1=avma;
av2=avma;
z=poleval(f,ss);
if(gcmp0(z))
{
avma=av2;
nbrac++;
y[nbrac]=(long)gmodulcp(ss,p);
f=gdiv(f,gsub(polx[vf],ss));
}
else
{
avma=av1;s++;
}
}
while((nbrac<deg-1)&&pasfini);
if (!nbrac) {avma=av;return cgetg(1,17);}
if (nbrac==(deg-1))
{
nbrac++;y[nbrac]=lneg(gdiv(f[2],f[3]));
}
g=cgetg(nbrac+1,17);
for(s=1;s<=nbrac;s++) g[s]=y[s];
av1=avma;return gerepile(av,av1,gcopy(g));
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* */
/* Recherche intelligente des racines modulo p */
/* */
/* (retourne le vecteur horizontal dont les composantes */
/* sont les racines (eventuellement vecteur a 0 comp.) */
/* */
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
GEN rootmod(f,p)
GEN f,p;
{
GEN y,unmodp,pol,xun,g,a,b,d,e,u,h,q,p1;
long av,tetpil,vf,n,i,j,la,flag,lb,rac[10];
if((typ(f)!=10)||gcmp0(f)) err(factmoder);
y=(GEN)(f[2]);vf=varn(f);
if((typ(y)!=3)||!gegal(y[1],p))
{p=gcopy(p);av=avma;f=gmul(f,gmodulcp(un,p));}
else av=avma;
unmodp=gmodulcp(gun,p);
if(gegal(p,deux))
{
j=0;if(gcmp0(f[2])) j++;
if(gcmp0(gsubst(f,vf,unmodp))) j+=2;
avma=av;
switch(j)
{
case 0: y=cgetg(1,17);break;
case 1: y=cgetg(2,17);y[1]=lmodulcp(gzero,p);break;
case 2: y=cgetg(2,17);y[1]=lmodulcp(gun,p);break;
case 3: y=cgetg(3,17);y[1]=lmodulcp(gzero,p);
y[2]=lmodulcp(gun,p);
}
return y;
}
if(!gcmpgs(p,4))
{
j=0;if(gcmp0(f[2])) {j++;rac[j]=0;}
p1=unmodp;
for(i=1;i<=3;i++)
{
if(gcmp0(gsubst(f,vf,p1))) {j++;rac[j]=i;}
if(i<3) p1=gadd(p1,unmodp);
}
avma=av;y=cgetg(j+1,17);
for(i=1;i<=j;i++) y[i]=lmodulcp(stoi(rac[i]),p);
return y;
}
pol=gmul(unmodp,polx[vf]);
xun=gmodulcp(pol,f);g=ggcd((gsub(gpui(xun,p),xun))[2],f);
n=lgef(g)-3;if(!n) {avma=av;y=cgetg(1,17);return y;}
y=cgetg(n+1,17);
if(gcmp0(g[2]))
{
y[1]=zero;g=gdiv(g,polx[vf]);
if(lgef(g)>3) y[2]=(long)g;
j=2;
}
else {y[1]=(long)g;j=1;}
while(j<=n)
{
a=(GEN)y[j];la=lgef(a)-3;
if(la==1)
{
y[j]=(gneg(gdiv(a[2],a[3])))[2];j++;
}
else if(la==2)
{
d=gsub(gmul(a[3],a[3]),gmul2n(gmul(a[2],a[4]),2));
e=gsqrt(d);u=gdiv(gun,gmul2n(a[4],1));
y[j]=(gmul(u,gsub(e,a[3])))[2];y[j+1]=(gmul(u,gneg(gadd(e,a[3]))))[2];
j+=2;
}
else
{
flag=1;h=pol;q=shifti(subis(p,1),-1);
while(flag)
{
p1=gmodulcp(h,a);b=ggcd((gsub(gpui(p1,q),gun))[2],a);
lb=lgef(b)-3;
if(lb&&(lb<la))
{
flag=0;y[j]=(long)b;y[j+lb]=ldiv(a,b);
}
else h=gadd(h,unmodp);
}
}
}
y=sort(y);tetpil=avma;return gerepile(av,tetpil,gmul(unmodp,y));
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* */
/* FACTORISATION MODULO p */
/* */
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
GEN factmod(f,p)
GEN f,p;
{
long i,j,k,d,e,vf,expos[100],psim,nbfact,nbf,av,pk,tetpil,calc;
GEN y,t[100],f1,f2,f3,df1,df2,g,g1,g2;
GEN xmod,u,v,pd,q,a0;
if((typ(f)!=10)||gcmp0(f)) err(factmoder);
if((lgef(p)>3)||((lgef(p)==3)&&(cmpis(p,VERYBIGINT)>0)))
err(impl,"factmod for primes >2^31");
a0=(GEN)(f[2]);vf=varn(f);
if((typ(a0)!=3)||!gegal(a0[1],p))
{p=gcopy(p);av=avma;f=gmul(f,gmodulcp(un,p));}
else av=avma;
if(lgef(f)==3)
{avma=av;y=cgetg(3,19);y[1]=lgetg(1,18);y[2]=lgetg(1,18);return y;}
/* 1ere etape : trouver les facteurs square-free produit
des facteurs premiers de meme multiplicite */
f1=f;e=0;nbfact=1;pk=1;df1=deriv(f1,vf);calc=0;
do
{
/*printf("debut 1re etape\n");*/
e+=pk;
while (gcmp0(df1))
{
pk *= (psim=itos(p));e=pk;
j=(lgef(f1)-3)/psim+3;f2=cgetg(j,10);
f2[1]=0x1000000+j;setvarn(f2,vf);
for(i=2;i<j;i++)
f2[i]=lcopy(f1[psim*(i-2)+2]);
f1=f2;df1=deriv(f1,vf);calc=0;
}
if(calc) f2=f3;else f2=ggcd(f1,df1);calc=1;
if (lgef(f2)<4) u=f1;
else
{
g1=gdiv(f1,f2);
if (gcmp0(df2=deriv(f2,vf)))
{
u=g1;f3=f2;
}
else
{
f3=ggcd(f2,df2);
if (lgef(f3)<4) u=gdiv(g1,f2);
else
{
g2=gdiv(f2,f3);u=gdiv(g1,g2);
}
}
}
/* 2eme etape :
Ici u est un polynome square-free
(produit des facteurs premiers de meme multiplicite e :
trouver les facteurs (square-free) produit des facteurs de meme
degre d */
d=0;pd=gun;
xmod=gmodulcp(polx[vf],u);v=xmod;
while(d<(lgef(u)-3)>>1)
{
/*printf("debut 2me etape\n");*/
d++;
pd=mulii(pd,p);
q=shifti(subis(pd,1),-1);
v=gpui(v,p);
g=ggcd((gsub(v,xmod))[2],u);
if (lgef(g)>3)
{
/*printf("debut 3me etape\n");*/
/* 3eme etape :
Ici g est produit de pol irreductibles ayant tous le meme degre d;*/
t[nbfact]=g;j=nbfact+(lgef(g)-3)/d;
split(p[2],t+nbfact,d,p[2],q);
/* le premier parametre est un entier variable m qui sera converti en un
polynome w dont les coeff sont ses digits en base p (initialement m = p --> X)
pour faire pgcd de g avec w^(p^d-1)/2 jusqu'a casser. */
for(;nbfact<j;expos[nbfact++]=e);
u=gdiv(u,g);v=gmodulcp(v[2],u);
}
/*printf("fin 3me etape\n");*/
} /*printf("fin 2me etape\n");*/
if (lgef(u)>3) {t[nbfact]=u;expos[nbfact++]=e;}
f1=f2;df1=df2;
}
/*printf("fin 1re etape\n");*/
while(lgef(f1)>3);
/*printf("fin de l'algorithme\n");*/
nbf=nbfact;
tetpil=avma;
t[1]=gdiv(t[1],((GEN)t[1])[lgef(t[1])-1]);
for(j=2;j<nbfact;j++)
{
if (expos[j]) t[j]=gdiv(t[j],((GEN)t[j])[lgef(t[j])-1]);
for (k=1;k<j;k++)
if (expos[k]&&polegal(t[j],t[k])) {expos[k]+=expos[j];expos[j]=0;nbf--;k=j;}
}
y=cgetg(3,19);
u=cgetg(nbf,18);y[1]=(long)u;
v=cgetg(nbf,18);y[2]=(long)v;
for(j=1,k=0;j<nbfact;j++)
{
if (expos[j])
{
k++;
u[k]=(long)t[j];
v[k]=lstoi(expos[j]);
}
}
return(gerepile(av,tetpil,y));
}
GEN stopoly(m,p,v) long m,p,v;
/* renvoie un polynome de la variable v
dont les coef sont les digits de m en base p */
{
GEN y;long l=2,i,c[1000];
do {c[l++]=m%p;m=m/p;} while(m);
y=cgetg(l,10);for(i=2;i<l;i++) y[i]=lstoi(c[i]);
y[1]=0x1000000+l;setvarn(y,v);
return y;
}
split(m,t,d,p,q)
GEN *t,q;
long p,d,m;
/*-----------------------------------------------------
Programme recursif :
Entree:
m entier arbitraire ( converti en un polynome w )
p nb premier; q=(p^d-1)/2
t[0] polynome de degre k*d prod de k fact de deg d.
Sortie:
t[0],t[1]...t[k-1] contiennent les k facteurs de g
------------------------------------------------------*/
{
long j,l,v,av,av1,dv;
GEN w,w0,wm,unmodp;
if ((dv=lgef(*t)-3)==d) return 0;
v=varn(*t);
unmodp=gmodulcp(un,stoi(p));
do
{
av=avma;
if(p==2)
{
w=gmul(gpuigs(polx[v],m-1),unmodp);m+=2;
for(w0=w,j=1;j<d;j++) w=gmod(gadd(w0,gmul(w,w)),*t);
}
else
{
w=gmul(stopoly(m++,p,v),unmodp);
wm=gpui(gmodulcp(w,*t),q);w=gsub(wm[2],unmodp);
}
av1=avma;
w=gerepile(av,av1,ggcd(*t,w));
l=lgef(w)-3;
}
while((!l)||(l==dv));
t[j=l/d]=gdiv(*t,w);*t=w;
split(m,t+j,d,p,q);split(m,t,d,p,q);
}
GEN decpol(x,klim)
GEN x;
long klim;
/* a modifier. Ecrit principalement pour le programme trace.c */
/* aucune verification */
/* klim=0 habituellement, sauf si l'on ne veut chercher que les facteurs de degre <= klim */
{
short int pos[200];
long av=avma,av1,tete,lx,k,kin,i,j,i1,i2,fl,d,nbfact;
GEN res,p1,p2;
kin=1;res=cgetg(lx=lgef(x)-2,17);nbfact=0;
p1=roots(x,4);d=lg(p1)-1;if(!klim) klim=d;
do
{
fl=1;
for(k=kin;((k+k)<=d)&&fl&&(k<=klim);k++)
{
for(i=0;i<=k;i++) pos[i]=i;
do
{
av1=avma;p2=gzero;j=0;
for(i1=1;i1<=k;i1++) p2=gadd(p2,p1[pos[i1]]);
if((gexpo(gimag(p2))<-20)&&(gexpo(gsub(p2,ground(p2)))<-20))
{
p2=gun;
for(i1=1;i1<=k;i1++) p2=gmul(p2,gsub(polx[0],p1[pos[i1]]));p2=ground(p2);
if((gcmp0(gimag(p2)))&&(gcmp0(gmod(x,p2))))
{
res[++nbfact]=(long)p2;x=gdiv(x,p2);fl=0;kin=k;p2=cgetg(d-k+1,18);
i1=1;i2=1;for(i=1;i<=d;i++)
{
if((i1<=k)&&(i==pos[i1])) i1++;
else p2[i2++]=p1[i];
}
p1=p2;d-=k;
}
}
if(fl)
{
avma=av1;pos[k]++;
while(pos[k-j]>(d-j))
{
j++;pos[k-j]++;
}
for(i=k-j+1;i<=k;i++) pos[i]=i+pos[k-j]-k+j;
}
}
while((j<k)&&fl);
}
}
while(((((k+k)<=d)&&(k<=klim))||(!fl))&&(lgef(x)>3));
if(lgef(x)>3) res[++nbfact]=(long)x;
setlg(res,nbfact+1);for(j=nbfact+1;j<lx;j++) res[j]=zero; /*necessaire pour gerepile */
tete=avma;return gerepile(av,tete,greal(res));
}
GEN factpol2(x,klim)
GEN x;
long klim;
/* klim=0 habituellement, sauf si l'on ne veut chercher que les facteurs de degre <= klim */
{
long av=avma,av2,vv,k,i,j,i1,f,nbfac;
GEN res,p1,p2,y,d,fa[30],a,ap,t,v,w;
if((typ(x)!=10)||(!signe(x))) err(factpoler1);
y=cgetg(3,19);if(lgef(x)==3) {y[1]=lgetg(1,18);y[2]=lgetg(1,18);return y;}
if(lgef(x)==4)
{
p1=cgetg(2,18);y[1]=(long)p1;p1[1]=lcopy(x);
p1=cgetg(2,18);y[2]=(long)p1;p1[1]=un;return y;
}
d=content(x);vv=varn(x);a=gdiv(x,d);ap=deriv(a,vv);t=ggcd(a,ap);v=gdiv(a,t);
w=gdiv(ap,t);j=0;f=1;nbfac=0;
while(f)
{
j++;w=gsub(w,deriv(v,vv));f=signe(w);
if(f) {res=ggcd(v,w);v=gdiv(v,res);w=gdiv(w,res);}
else res=v;
fa[j]=(lgef(res)>3) ? decpol(res,klim) : cgetg(1,18);
nbfac+=(lg(fa[j])-1);
}
av2=avma;y=cgetg(3,19);p1=cgetg(nbfac+1,18);y[1]=(long)p1;
p2=cgetg(nbfac+1,18);y[2]=(long)p2;
for(i=1,k=0;i<=j;i++)
for(i1=1;i1<lg(fa[i]);i1++)
{
p1[++k]=lcopy(fa[i][i1]);p2[k]=lstoi(i);
}
return gerepile(av,av2,y);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* */
/* Recherche de racines p-adiques */
/* */
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* a etant un p-adique, retourne le vecteur des racines p-adiques de f
congrues a a modulo p dans le cas ou on suppose f(a) congru a 0 modulo p
(ou a 4 si p=2). */
#define gmaxval(x,y) (gcmp0(x)?BIGINT:ggval(x,y))
GEN apprgen(f,a)
GEN f,a;
{
GEN fp,fg,p1,p,pro,idiot,idiot2,u,ip,quatre;
long av=avma,tetpil,v,vv,ps,i,j,k,lu,n,fl2;
if((typ(f)!=10)||(typ(a)!=7)||gcmp0(f)) err(rootper1);
v=varn(f);fp=deriv(f,v);fg=ggcd(f,fp);
if(lgef(fg)>3) {f=gdiv(f,fg);fp=deriv(f,v);}
p=(GEN)a[2];p1=poleval(f,a);if((vv=gmaxval(p1,p))<=0) err(rootper2);
fl2=gegal(p,gdeux);if((vv==1)&&fl2) err(rootper2);
if(fl2) quatre=stoi(4);vv=gmaxval(poleval(fp,a),p);
if(!vv)
{
while(!gcmp0(p1)) {a=gsub(a,gdiv(p1,poleval(fp,a)));p1=poleval(f,a);}
tetpil=avma;pro=cgetg(2,17);pro[1]=lcopy(a);
return gerepile(av,tetpil,pro);
}
n=lgef(f)-3;pro=cgetg(n+1,17);j=0;
p1=poleval(f,gadd(a,gmul(fl2?quatre:p,polx[v])));
if(!gcmp0(p1)) p1=gdiv(p1,gpuigs(p,ggval(p1,p)));
if(gcmpgs(p,VERYBIGINT)>0) err(impl,"apprgen for p>=2^31");
ps=fl2?4:itos(p);idiot=gsub(a,a);idiot2=fl2 ? ggrando(p,2) : ggrando(p,1);
for(i=0;i<ps;i++)
{
ip=stoi(i);
if(gcmp0(poleval(p1,gadd(ip,idiot2))))
{
u=apprgen(p1,gadd(idiot,ip));
lu=lg(u);
for(k=1;k<lu;k++) {j++;pro[j]=ladd(a,gmul(fl2?quatre:p,u[k]));}
}
}
tetpil=avma;p1=cgetg(j+1,17);for(i=1;i<=j;i++) p1[i]=lcopy(pro[i]);
return gerepile(av,tetpil,p1);
}
/* Retourne le vecteur des racines p-adiques de f en precision r */
GEN rootpadic(f,p,r)
GEN f,p;
long r;
{
GEN y,fp,fg,pro,yi,p1,rac;
long v,lx,i,j,k,n,av=avma,tetpil,fl2;
if((typ(f)!=10)||gcmp0(f)) err(rootper1);
if(r<=0) err(rootper4);
v=varn(f);fp=deriv(f,v);fg=ggcd(f,fp);
if(lgef(fg)>3) {f=gdiv(f,fg);fp=deriv(f,v);}
fl2=gegal(p,gdeux);rac=(fl2&&(r>=2))? rootmod(f,stoi(4)) : rootmod(f,p);
lx=lg(rac);
if(r==1)
{
tetpil=avma;y=cgetg(lx,18);
for(i=1;i<lx;i++)
{
p1=(GEN)rac[i];yi=cgetg(5,7);yi[2]=lclone(p);yi[3]=lcopy(p);
yi[4]=lcopy(p1[2]);yi[1]=0x18000;y[i]=(long)yi;
}
return gerepile(av,tetpil,y);
}
n=lgef(f)-3;pro=cgetg(n+1,18);j=0;
for(i=1;i<lx;i++)
{
p1=(GEN)rac[i];yi=cgetg(5,7);yi[2]=lclone(p);
if(signe(p1[2]))
{
if((!fl2)||mpodd(p1[2]))
{
yi[3]=lpuigs(p,r);yi[4]=p1[2];yi[1]=0x8000+(r<<16);
}
else
{
yi[3]=lpuigs(p,r);yi[4]=un;yi[1]=0x8001+(r<<16);
}
}
else {yi[3]=un;yi[4]=zero;yi[1]=0x8000+r;}
p1=apprgen(f,yi);for(k=1;k<lg(p1);k++) pro[++j]=p1[k];
}
tetpil=avma;p1=cgetg(j+1,18);for(i=1;i<=j;i++) p1[i]=lcopy(pro[i]);
return gerepile(av,tetpil,p1);
}
/* a appartenant a une extension finie de Q_p, retourne le vecteur des racines
de f congrues a a modulo p dans le cas ou on suppose f(a) congru a 0 modulo p
(ou a 4 si p=2). */
GEN apprgen9(f,a)
GEN f,a;
{
GEN fp,fg,p1,p,pro,idiot,idiot2,u,ip,alpha,t,vecg,quatre;
long av=avma,tetpil,v,vv,ps,i,j,k,lu,n,precpadique,d,va,flfin,fl2;
if((typ(f)!=10)||gcmp0(f)) err(rootper1);
if(typ(a)==7) return apprgen(f,a);
if((typ(a)!=9)||(typ(a[2])!=10)) err(rootper1);
v=varn(f);fp=deriv(f,v);fg=ggcd(f,fp);
if(lgef(fg)>3) {f=gdiv(f,fg);fp=deriv(f,v);}
alpha=(GEN)a[2];t=(GEN)a[1];precpadique=BIGINT;va=varn(t);
for(i=2;i<lgef(alpha);i++)
{
pro=(GEN)alpha[i];
if(typ(pro)==7)
{
precpadique=min(precpadique,(signe(pro[4])?valp(pro)+precp(pro):valp(pro)));
p=(GEN)pro[2];
}
}
d=lgef(t)-3;
for(i=2;i<=d+2;i++)
{
pro=(GEN)t[i];
if(typ(pro)==7)
{
precpadique=min(precpadique,(signe(pro[4])?valp(pro)+precp(pro):valp(pro)));
p=(GEN)pro[2];
}
}
if(precpadique==BIGINT) err(rootper1);
p1=poleval(f,a);if((vv=gmaxval(lift(p1),p))<=0) err(rootper2);
fl2=gegal(p,gdeux);if((vv==1)&&fl2) err(rootper2);
if(fl2) quatre=stoi(4);vv=gmaxval(lift(poleval(fp,a)),p);
if(!vv)
{
while(!gcmp0(p1)) {a=gsub(a,gdiv(p1,poleval(fp,a)));p1=poleval(f,a);}
tetpil=avma;pro=cgetg(2,18);pro[1]=lcopy(a);
return gerepile(av,tetpil,pro);
}
n=lgef(f)-3;pro=cgetg(n+1,18);j=0;
p1=poleval(f,gadd(a,gmul(fl2?quatre:p,polx[v])));
if(!gcmp0(p1)) p1=gdiv(p1,gpuigs(p,ggval(p1,p)));
if(gcmpgs(p,VERYBIGINT)>0) err(impl,"apprgen9 for p>=2^31");
ps=fl2?4:itos(p);idiot=gmodulcp(ggrando(p,precpadique),t);
idiot2=gmodulcp(fl2 ? ggrando(p,2) : ggrando(p,1),t);
vecg=cgetg(d+1,18);for(i=1;i<=d;i++) vecg[i]=zero;
flfin=1;
while(flfin)
{
ip=gmodulcp(gtopoly(vecg,va),t);
if(gcmp0(poleval(p1,gadd(ip,idiot2))))
{
u=apprgen9(p1,gadd(ip,idiot));
lu=lg(u);
for(k=1;k<lu;k++) {j++;pro[j]=ladd(a,gmul(fl2?quatre:p,u[k]));}
}
i=d;while(i&&(!cmpis(vecg[i],ps-1))) i--;
if(i) vecg[i]=laddsi(1,vecg[i]);
else flfin=0;
}
tetpil=avma;p1=cgetg(j+1,18);for(i=1;i<=j;i++) p1[i]=lcopy(pro[i]);
return gerepile(av,tetpil,p1);
}
GEN padicff(f,p,r)
GEN f,p;
long r;
/* interne donc aucune verification */
/* En entree, res est un polynome a coeffs dans Z_p sans facteur carre */
{
long av=avma,tetpil,lx,n,i,j,k,v,fl2;
GEN rac,pro,p1,p2,y,yi,quatre;
fl2=gegal(p,gdeux);
if(fl2&&(r>=2)) err(impl,"padicfactor for p=2");
rac=factmod(f,p);lx=lg(rac[1]);
if(r==1)
{
tetpil=avma;y=cgetg(lx,18);p2=(GEN)rac[1];
for(i=1;i<lx;i++) y[i]=(long)gcvtop(p2[i],p,1);
return gerepile(av,tetpil,y);
}
if(fl2) quatre=stoi(4);
n=lgef(f)-3;pro=cgetg(n+1,18);j=0;v=varn(f);p2=lift(rac[1]);
for(i=1;i<lx;i++)
{
p1=(GEN)p2[i];
if(lgef(p1)==4)
{
p1=gcmp0(p1[2])?(GEN)p1[2]:gsub(fl2?quatre:p,p1[2]);
yi=cgetg(5,7);yi[2]=lclone(p);
if(signe(p1))
{
if((!fl2)||mpodd(p1))
{
yi[3]=lpuigs(p,r);yi[4]=(long)p1;yi[1]=0x8000+(r<<16);
}
else
{
yi[3]=lpuigs(p,r);yi[4]=un;yi[1]=0x8001+(r<<16);
}
}
else {yi[3]=un;yi[4]=zero;yi[1]=0x8000+r;}
p1=apprgen(f,yi);
for(k=1;k<lg(p1);k++) pro[++j]=lsub(polx[v],p1[k]);
}
else
{
yi=gmodulcp(gcvtop(polx[v],p,r),gcvtop(p2[i],p,r));
p1=apprgen9(f,yi);
for(k=1;k<lg(p1);k++) pro[++j]=(long)caract(p1[k],v);
}
}
tetpil=avma;p1=cgetg(j+1,18);for(i=1;i<=j;i++) p1[i]=lcopy(pro[i]);
return gerepile(av,tetpil,p1);
}
GEN factorpadic(x,p,r)
GEN x,p;
long r;
{
long av=avma,av2,vv,k,i,j,i1,f,nbfac;
GEN res,p1,p2,y,d,fa[100],a,ap,t,v,w;
if((typ(x)!=10)||(!signe(x))) err(rootper1);
if(r<=0) err(rootper4);
y=cgetg(3,19);if(lgef(x)==3) {y[1]=lgetg(1,18);y[2]=lgetg(1,18);return y;}
if(lgef(x)==4)
{
p1=cgetg(2,18);y[1]=(long)p1;p1[1]=lcopy(x);
p1=cgetg(2,18);y[2]=(long)p1;p1[1]=un;return y;
}
d=content(x);vv=varn(x);a=gdiv(x,d);ap=deriv(a,vv);t=ggcd(a,ap);v=gdiv(a,t);
w=gdiv(ap,t);j=0;f=1;nbfac=0;
while(f)
{
j++;w=gsub(w,deriv(v,vv));f=signe(w);
if(f)
{
res=ggcd(v,w);v=gdiv(v,res);w=gdiv(w,res);
}
else res=v;
fa[j]=(lgef(res)>3) ? padicff(res,p,r) : cgetg(1,18);
nbfac+=(lg(fa[j])-1);
}
av2=avma;y=cgetg(3,19);p1=cgetg(nbfac+1,18);y[1]=(long)p1;
p2=cgetg(nbfac+1,18);y[2]=(long)p2;
for(i=1,k=0;i<=j;i++)
for(i1=1;i1<lg(fa[i]);i1++)
{
p1[++k]=lcopy(fa[i][i1]);p2[k]=lstoi(i);
}
return gerepile(av,av2,y);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* */
/* FACTORISATION DANS F_q */
/* */
/* */
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
GEN factmod9(f,p,a)
GEN f,p,a;
{
long i,j,k,d,e,vf,va,expos[100],psim,nbfact,nbf,av,pk,tetpil,calc,qqs;
GEN y,t[100],f1,f2,f3,df1,df2,g,g1,g2;
GEN xmod,u,v,pd,q,qq,unfp,unfq;
if((typ(a)!=10)||(typ(f)!=10)||gcmp0(f)||gcmp0(a)) err(factmoder);
if(lgef(f)==3)
{y=cgetg(3,19);y[1]=lgetg(1,18);y[2]=lgetg(1,18);return y;}
vf=varn(f);va=varn(a);av=avma;unfp=gmodulcp(un,p);
a=gmul(unfp,a);unfq=gmodulcp(gmul(unfp,polun[va]),a);
f=gmul(unfq,f);qq=gpuigs(p,lgef(a)-3);qqs=itos(qq);
/* 1ere etape : trouver les facteurs square-free produit
des facteurs premiers de meme multiplicite */
f1=f;e=0;nbfact=1;pk=1;df1=deriv(f1,vf);calc=0;
do
{
/*printf("debut 1re etape\n");*/
e+=pk;
while (gcmp0(df1))
{
pk *= (psim=itos(p));e=pk;
j=(lgef(f1)-3)/psim+3;f2=cgetg(j,10);
f2[1]=0x1000000+j;setvarn(f2,vf);
for(i=2;i<j;i++)
f2[i]=lcopy(f1[psim*(i-2)+2]);
f1=f2;df1=deriv(f1,vf);calc=0;
}
if(calc) f2=f3;else f2=ggcd(f1,df1);calc=1;
if (lgef(f2)<4) u=f1;
else
{
g1=gdiv(f1,f2);
if (gcmp0(df2=deriv(f2,vf)))
{
u=g1;f3=f2;
}
else
{
f3=ggcd(f2,df2);
if (lgef(f3)<4) u=gdiv(g1,f2);
else
{
g2=gdiv(f2,f3);u=gdiv(g1,g2);
}
}
}
/* 2eme etape :
Ici u est un polynome square-free
(produit des facteurs premiers de meme multiplicite e :
trouver les facteurs (square-free) produit des facteurs de meme
degre d */
d=0;pd=gun;
xmod=gmodulcp(polx[vf],u);v=xmod;
while(d<(lgef(u)-3)>>1)
{
/*printf("debut 2me etape\n");*/
d++;
pd=mulii(pd,qq);
q=shifti(subis(pd,1),-1);
v=gpui(v,qq);
g=ggcd((gsub(v,xmod))[2],u);
if (lgef(g)>3)
{
/*printf("debut 3me etape\n");*/
/* 3eme etape :
Ici g est produit de pol irreductibles ayant tous le meme degre d;*/
t[nbfact]=g;j=nbfact+(lgef(g)-3)/d;
split9(qqs,t+nbfact,d,p[2],q,unfq,qqs,a);
/* le premier parametre est un entier variable m qui sera converti en un
polynome w dont les coeff sont ses digits en base p (initialement m = p --> X)
pour faire pgcd de g avec w^(qq^d-1)/2 jusqu'a casser. */
for(;nbfact<j;expos[nbfact++]=e);
u=gdiv(u,g);v=gmodulcp(v[2],u);
}
/*printf("fin 3me etape\n");*/
} /*printf("fin 2me etape\n");*/
if (lgef(u)>3) {t[nbfact]=u;expos[nbfact++]=e;}
f1=f2;df1=df2;
}
/*printf("fin 1re etape\n");*/
while(lgef(f1)>3);
/*printf("fin de l'algorithme\n");*/
nbf=nbfact;
tetpil=avma;
t[1]=gdiv(t[1],((GEN)t[1])[lgef(t[1])-1]);
for(j=2;j<nbfact;j++)
{
if (expos[j]) t[j]=gdiv(t[j],((GEN)t[j])[lgef(t[j])-1]);
for (k=1;k<j;k++)
if (expos[k]&&polegal(t[j],t[k])) {expos[k]+=expos[j];expos[j]=0;nbf--;k=j;}
}
y=cgetg(3,19);
u=cgetg(nbf,18);y[1]=(long)u;
v=cgetg(nbf,18);y[2]=(long)v;
for(j=1,k=0;j<nbfact;j++)
{
if (expos[j])
{
k++;
u[k]=(long)t[j];
v[k]=lstoi(expos[j]);
}
}
return(gerepile(av,tetpil,y));
}
GEN stopoly9(m,p,qqs,v,a)
long p,v,m,qqs;
GEN a;
/* renvoie un polynome de la variable v
dont les coef sont les digits de m en base qq */
{
GEN y,p2;
long p1,l=2,l1,i,j,va=varn(a),c[1000],d[1000];
do {c[l++]=m%qqs;m/=qqs;} while(m);
y=cgetg(l,10);y[1]=0x1000000+l;setvarn(y,v);
for(i=2;i<l;i++)
{
p1=c[i];l1=2;
do {d[l1++]=p1%p;p1/=p;} while(p1);
p2=cgetg(l1,10);p2[1]=0x1000000+l1;setvarn(p2,va);
for(j=2;j<l1;j++) p2[j]=lstoi(d[j]);
y[i]=lmodulcp(p2,a);
}
return y;
}
GEN stopoly92(d1,v,a,ptres)
long v,d1;
GEN a,*ptres;
/* renvoie un polynome aleatoire de la variable v
de degre inferieur ou egal a 2*d1-1 */
{
GEN y,p2;
long p1,l1,i,j,d2,l,va=varn(a),c[1000],d[1000],k=lgef(a)-3;
/* qqs=2^k */
c[1]=1;d2=d1+d1+1;
do
{
for(l=2;l<=d2;l++) c[l]=(rand())>>(31-k);
l=d2;while(!c[l]) l--;
}
while(l<=2);
l++;
y=cgetg(l,10);y[1]=0x1000000+l;setvarn(y,v);
for(i=2;i<l;i++)
{
p1=c[i];l1=2;
do {d[l1++]=p1&1;p1>>=1;} while(p1);
p2=cgetg(l1,10);p2[1]=0x1000000+l1;setvarn(p2,va);
for(j=2;j<l1;j++) p2[j]=lstoi(d[j]);
y[i]=lmodulcp(p2,a);
}
p1=(rand())>>(31-k);l1=2;
do {d[l1++]=p1&1;p1>>=1;} while(p1);
p2=cgetg(l1,10);p2[1]=0x1000000+l1;setvarn(p2,va);
for(j=2;j<l1;j++) p2[j]=lstoi(d[j]);
*ptres=gmodulcp(p2,a);
return y;
}
split9(m,t,d,p,q,unfq,qqs,a)
GEN *t,q,unfq,a;
long m,d,p,qqs;
/*-----------------------------------------------------
Programme recursif :
Entree:
m entier arbitraire ( converti en un polynome w )
p nb premier; q=(qq^d-1)/2
t[0] polynome de degre k*d prod de k fact de deg d.
Sortie:
t[0],t[1]...t[k-1] contiennent les k facteurs de g
------------------------------------------------------*/
{
long j,l,v,av,av1,dv;
GEN w,w0,wm,res;
if ((dv=lgef(*t)-3)==d) return 0;
v=varn(*t);
do
{
av=avma;
if(p==2)
{
w=gmul(stopoly92(d,v,a,&res),unfq);
for(w0=w,j=1;j<d;j++) w=gmod(gadd(w0,gpuigs(w,qqs)),*t);
w=gsub(w,res);
}
else
{
w=gmul(stopoly9(m,p,qqs,v,a),unfq);m++;
wm=gpui(gmodulcp(w,*t),q);w=gsub(wm[2],unfq);
}
av1=avma;
w=gerepile(av,av1,ggcd(*t,w));
l=lgef(w)-3;
}
while((!l)||(l==dv));
t[j=l/d]=gdiv(*t,w);*t=w;
split9(m,t+j,d,p,q,unfq,qqs,a);split9(m,t,d,p,q,unfq,qqs,a);
}
GEN randompoly9(d1,p,v,a)
long v,d1;
GEN a,p;
/* renvoie un polynome aleatoire de la variable v
de degre inferieur ou egal a d1 */
{
GEN y,p2;
long p1,ps,qqs,l1,i,j,l,va=varn(a),c[1000],d[1000],k=lgef(a)-3;
c[1]=1;qqs=itos(gpuigs(p,k));ps=itos(p);
do
{
for(l=2;l<=d1+2;l++) c[l]=(rand()*(((double)qqs)/C31));
l=d1+2;while(!c[l]) l--;
}
while(l<=2);
l++;
y=cgetg(l,10);y[1]=0x1000000+l;setvarn(y,v);
for(i=2;i<l;i++)
{
p1=c[i];l1=2;
do {d[l1++]=p1%ps;p1/=ps;} while(p1);
p2=cgetg(l1,10);p2[1]=0x1000000+l1;setvarn(p2,va);
for(j=2;j<l1;j++) p2[j]=lstoi(d[j]);
y[i]=lmodulcp(p2,a);
}
return y;
}